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Abstract

A three-dimensional transient mathematical model (following a fixed-grid enthalpy-based continuum formulation) is

used to study the interaction of double-diffusive natural convection and non-equilibrium solidification of a binary

mixture in a cubic enclosure cooled from a side. Investigations are carried out for two separate test systems, one

corresponding to a typical model ‘‘metal–alloy analogue’’ system and other corresponding to a real metal–alloy system.

Due to stronger effects of solutal buoyancy in actual metal–alloy systems than in corresponding analogues, the con-

vective transport mechanisms for the two cases are quite different. However, in both cases, similar elements of three-

dimensionality are observed in the curvature and spacing of the projected streamlines. As a result of three-dimensional

convective flow patterns, a significant solute macrosegregation is observed across the transverse sections of the cavity,

which cannot be captured by two-dimensional simulations.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The phase change process of binary systems is im-

portant in many different fields such as metallurgy,

geology, oceanography, crystal growth, and nuclear

reactor safety. When a multi-component melt solidifies

non-isothermally, the solute phase is rejected from the

solidifying matrix into a two-phase region called �mushy
zone�. The melt, in turn, interacts with the mush and its
solutal and thermal diffusion layers, resulting in a situ-

ation where both temperature and solute concentration

gradients play significant roles. The temperature gradi-

ents arise from externally imposed boundary conditions

as well as from latent heat released within the mushy

region. The concentration gradients, on the other hand,

are caused by selective rejection of solute at the solid/

liquid interface (on account of difference in solubilities

of constituents in each phase), and transport of solute by

diffusion and convection in the liquid region. These two

gradients lead to a fluid flow on account of thermal and

solutal buoyancy in both mushy and liquid regions, and

the resulting transport phenomena can be described as

‘‘double diffusive’’ convection. The rejected species may

be redistributed locally by diffusion, the phenomena

being known as microsegregation. In addition, thermo-

solutal convection may result in a composition variation

over distances comparable to the size of the solidifica-

tion domain due to transport of rejected solute by fluid

flow, the phenomenon being known as macrosegrega-

tion.

For a detailed review of the literature discussing the

role of macroscopic transport phenomena during solid-

ification, one may refer to a comprehensive review paper

by Huppert [1]. Though several kinds of boundary

conditions are considered in the literature on solidifica-

tion, it is mentioned in [4] that cooling and crystallising a

melt from the side deserves special attention. This is

because of the fact that horizontal thermal and com-

positional gradients interact with the predominantly
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vertical buoyant flow of the released fluid. Additionally,

if the liquid within the two-phase region is enriched by

the lighter species due to precipitation of the solid, a

density inversion is created. Such inversion corresponds

to the release of a less dense fluid that tends to induce an

upward fluid motion. On the other hand, cooling across

the interface may tend to drive the cooler (and hence, in

many cases, a denser) fluid vertically downwards in case

the orientation of the solid–liquid interface formed is

vertically aligned. Thus, an unstable thermo-solutal

convection can be originated [2]. In general, this situa-

tion demands ample attention from researchers because

of its relevance to familiar geological and metallurgical

phase-change situations [3,4]. In this context, a number

of benchmark experiments have been performed to study

solidification of a binary solution cooled from an iso-

thermal vertical surface. Such efforts are reported in the

works of Thompson and Szekely [5], Christenson and

Incropera [6], and Braga and Viskanta [7], to name a

few. Concurrently, there have been several investigations

reporting numerical studies pertaining to solidification

of alloys, primarily inspired by metallurgical applica-

tions. The simplest of the models started with the case of

pure metals [8,9], and the studies have been subsequently

extended to the case of binary melts by Thompson and

Szekely [5]. A majority of the above studies initially

started with volume-averaged equations of alloy solidi-

fication [10–12] that describe the interrelation between

macroscopic and microscopic variables. All the above

models are essentially multi-phase models, and hence the

interface needs to be tracked separately (which may not

necessarily be sharp, as in the case of solidification of a

multi-component fluid). Additionally, interface bound-

ary conditions need to be imposed. A major deviation in

this regard has been the formulation of a continuum

model by Bennon and Incropera [13], based on the

principles of classical mixture theory. The continuum-

model equations have the advantage of being valid in all

regions (solid, mush, liquid). This makes them amenable

to an equivalent single-domain numerical formulation

Nomenclature

Across cross-sectional area of the interface (per-

pendicular to x-direction)
cp specific heat

C species concentration

D species diffusion coefficient

f mass fraction

F a coefficient in the Darcy source term

F �1 inverse of latent heat function

g volume fraction of concerned phase (when

subscripted), acceleration due to gravity

(when not subscripted)

G a coefficient in the Darcy source term

h specific enthalpy

DH latent enthalpy

k thermal conductivity

kp partition coefficient

K permeability

lref diffusion length scale in the liquid

L latent heat of fusion

m==
liq mass flux at the liquidus interface

N buoyancy ratio (ratio of solutal and thermal

Rayleigh numbers)

Nu Nusselt number

p pressure

Pe Peclet number

q==liq heat flux at liquidus interface

r interfacial area concentration

R interface speed

RaS solutal Rayleigh number

RaT thermal Rayleigh number

Rpc phase change rate per unit volume

S source term

Sh Sherwood number

t time

T temperature

u x-component of velocity
~uu velocity vector

x; y; z coordinate variable

xliq position of liquidus interface (x-coordinate)
xmax dimension of the problem domain (along x-

direction)

Greek symbols

a thermal volumetric expansion coefficient

b solutal volumetric expansion coefficient

d diffusion boundary layer thickness

q density

l dynamic viscosity

v volume fraction

Subscripts

b buoyancy

0; i initial

l liquid phase

m evaluated at melting point

macro macroscopic

mix mixture

s solid phase

Superscript

� equilibrium
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because there is no need to track the moving interfaces

and impose boundary conditions on them. The model

has subsequently been extended to three limiting cases

of metallurgical systems [18], namely the mushy fluid

model, a columnar dendritic model with a dispersed

microstructure, and a columnar dendritic model with a

distinct microstructure. Using these models, Neilson and

Incropera [15] have been able to simulate numerically the

induced fluid flow and channel development within

the mush of an ammonium chloride-water system. The

continuum approach has been successfully implemented

in several other investigations executed in the last de-

cade. Probably the most important finding of all the

above studies is that multi-component convection and its

interaction with solidification plays an important role in

the long-range transport of solute, and thereby controls

the final macrosegregation pattern.

However, all the above-mentioned studies are limited

by the assumption of two-dimensional flow and nothing

can be inferred about the possible development of three-

dimensionality in the overall transport process. On the

other hand, three-dimensional flow patterns are likely to

occur when solidification takes place in a cavity with

characteristic dimensions along all the three coordinate

directions of nearly the same order. In fact, from a re-

cent numerical study on steady-state double-diffusive

convection in a fluid-saturated porous cubic enclosure

subjected to opposing and horizontal gradients of tem-

perature and concentration [16], it is revealed that the

flow is strictly three-dimensional for a certain range of

parameters. Moreover, if such situations are accompa-

nied by the phenomenon of solidification, there are more

demanding challenges offered by the presence of a

moving phase-change front. In order to make effective

estimates regarding the evolution of macrosegregation in

such cases, a complete three-dimensional treatment is

necessary so that practical situations of solidification

can be addressed in a more realistic manner. However,

to the best of our knowledge, three-dimensional analysis

of macroscopic transport phenomena during binary so-

lidification is yet to be reported in the literature.

The present work is an attempt to investigate the

three-dimensionality in momentum, heat and solute

transport during binary alloy solidification in a cubic

cavity. The transient three-dimensional mathematical

model is illustrated through two separate case studies,

the first one corresponding to a ‘‘metal–alloy analogue’’

and the second one corresponding to a real metallic al-

loy system. In this context, it is important to clarify the

distinction between the above two types of solidification

systems. Metal–alloy analogue systems are substances

which, in spite of not being actual metallic alloys, exhibit

solidification behaviour similar to most metallic alloys,

though only at much lower temperatures. In order to

investigate the nature and influence of convection on

directional solidification, such model systems (for in-

stance, NH4Cl–H2O system) have frequently been em-

ployed. This is primarily because of the fact that such

systems are essentially transparent (thereby facilitating

flow visualisation) and they freeze at temperatures much

lower than actual metallic alloy systems. However, the

solidification behaviour of such systems may be different

from the actual metal–alloy systems in similar situations,

owing to a large difference in many of the thermo-

physical properties between them. For instance, a typical

ratio of solutal to thermal buoyancy effect (bDC=aDT ) is
of the order of unity for most typical metal–alloy ana-

logue systems, whereas the same ratio is about an order

of magnitude higher for many real metal–alloy systems.

Thus, a stronger solutally driven convection can be ex-

pected in actual metal–alloy systems than in the corre-

sponding analogues. Although mathematical description

of the transport processes is essentially the same for both

the cases, the flow patterns and hence the resultant heat

and mass transfer are not expected to be very similar. In

this manuscript, we report an investigation regarding the

resultant thermo-solutal convection and directional

solidification for the two cases. Finally, the effect of

three-dimensionality in species distribution over a mac-

roscopic length scale is also analysed in this context,

which is a matter of particular importance for most

metallic alloy systems.

2. Problem formulation

We consider a three-dimensional cubic cavity filled

with a binary mixture (Fig. 1), which is initially liquid

and uniform in temperature (T0) and composition (C0).
At time t ¼ 0, the temperature of one vertical boundary
(x ¼ 0) is instantaneously dropped and maintained be-
low the eutectic temperature of the melt, so that solidi-

fication of the alloy immediately commences at the cold

boundary. All other boundaries remain insulated. A

zero mass flux condition prevails on all the walls of the

cavity. The fluid flow is assumed to be laminar and

unsteady. The binary fluid is considered to be Newto-

nian and incompressible. We also assume that there is

no relative velocity between the solid and the liquid

phases, and that the solid phase is free of internal

stresses [13]. Since a variable-property assumption is

incorporated inside the model, we prefer to retain the

governing equations in dimensional forms. The equa-

tions governing conservation of mass, momentum,

energy and species concentration appropriate to the

present study can be written as follows [13,14]:

o

ot
ðqÞ þ r � ðq~uuÞ ¼ 0 ð1Þ

o

ot
ðq~uuÞ þ q~uu � ðr~uuÞ ¼ r � ll

q
ql
r~uu

� �
�rp þ Sb � S~uu

ð2aÞ
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where

Sb ¼ q~gg½aðT � T0Þ þ bðCl � C0Þ
 ð2bÞ

o

ot
ðfscps þ flcplÞðqT Þ þ r � ðfscps þ flcplÞðq~uuT Þ

¼ r � fðfsks þ flklÞrTg þ Sh ð3aÞ

where

Sh ¼ � o

ot
ðqflDHÞ

�
þr � ðq~uuDHÞ

�
ð3bÞ

o

ot
ðqCmixÞ þ r � ðq~uuClÞ ¼ r � ðqsfsDsrCs þ qlflDlrClÞ

ð4Þ

The continuum density function is defined as:

q ¼ ð1� vÞqs þ vql ð5Þ

In the above equation, v is the volume fraction of
liquid defined as v ¼ DH=L, where DH is the latent

enthalpy content of the computational cell under con-

sideration, and can be obtained by invoking the energy

conservation equation along with microscopic phase-

change considerations. The continuum velocity is de-

fined as:

~uu ¼ fs~uus þ fl~uul ð6Þ

where subscripts l and s refer to liquid and solid phases,

respectively.

In implementation of the above equations, we make

an extended Boussinesq approximation by neglecting

solidification shrinkage, following the conventional as-

sumption that the important density changes are those

associated with the buoyancy force in the liquid [17].

Hence, in subsequent analysis, symbols fl and v, signi-
fying mass fraction and volume fraction of liquid phase,

respectively, can be used interchangeably.

2.1. Modelling of fluid flow in mushy zone

The last term on the right hand side of Eq. (2a)

originates from the assumption that the mushy zone is a

saturated porous medium that offers frictional resistance

towards fluid flow in that region. For effective predic-

tion, the above flow resistance needs to be prescribed

consistently with the morphology of the phase-changing

domain. In the present study, we use a modified Darcy�s
model [18] as described subsequently, which is exten-

sively used in contemporary literature for mushy-zone

modelling in binary alloy solidification situations. Con-

sistent with the physics of dendritic growth, the above

model of viscous flow through a porous medium (as-

suming an isotropic permeability) leads to the following

source term in the momentum equations:

�S~uu ¼ � llq~uu
Kql

ð7Þ

where K is the permeability. For appropriate modelling
of the above term, K has to be properly prescribed as a
function of liquid fraction. For that purpose, the Car-

man–Kozeny relation [19] is used within a range of va-

lidity of 0 < v < 0:5; i.e.,

K ¼ K0
v3

ð1� vÞ2
ð8Þ

where K0 is a porosity constant. In practice, the effect of
the source term given by Eq. (7) is as follows. In fully

liquid domain (v ¼ 1), the source term is zero, and has no
influence, resulting in momentum conservation equa-

tions of the same form as the well-known Navier–Stokes

equation. In the elements that are changing phase, it

dominates over the transient, convective and diffusive

components of the momentum equation, thereby forcing

them to imitate the Carman–Kozeny model. In totally

solid elements (v ¼ 0), however, an extremely large
magnitude of the term overweighs the effects of all other

terms, and forces the velocities to be zero. However, due

to inaccuracy of this equation for v > 0:5, a hybrid
model is used for that region [18], as given by:

ll ¼ l0l
Al

Al � F ð1� vÞ

� �2
ð9Þ

and

K ¼ GK0
v3

ð1� vÞ2

" #
; where Al ¼ 0:4 ð10Þ

Here, F and G are according to the theory of rheology of
suspensions reducing the effects of excessive damping

action of the Darcy force as:

F ¼ 0:5� 1
p
arctan½100ðvcr � vÞ
 ð11aÞ

Insulated

Insulated

Insulated

Insulated

Insulated

Cooled boundary
(T=Tcold)

Z

X

Y

Fig. 1. Schematic diagram of the model problem.
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G ¼ 0:5þ 1
p
arctan½100ðvcr � vÞ
�4; where vcr ¼ 0:5

ð11bÞ

In the above equations, vcr can be considered as a critical
liquid fraction up to which the Carman–Kozeny equa-

tion remains valid.

2.2. Modelling of species transport

The general form of species conservation equation

(i.e., Eq. (4)) takes any special form depending on the

microstructure under consideration, i.e., precisely on the

manner in which Cmix is assumed to vary. Cmix, in gen-
eral, can be defined as:

Cmix ¼
R

qlCl dVl þ
R

qsCs dVs
qV

ð12aÞ

where dVl and dVl are elemental solid and liquid vol-
umes, respectively. As an illustration, in case one con-

siders a columnar dendritic growth with a dispersed

microstructure (resulting from theoretically infinite sol-

ute diffusivity of solid and liquid phases in an elemental

microvolume), the well-known lever rule becomes ap-

plicable, and Cmix takes the form

Cmix ¼ flCl þ fsCs ð12bÞ

Although equilibrium solidification is a relatively

easier proposition to analyse theoretically, it is not very

realistic, since it necessitates instantaneous atomic re-

arrangements in order to equilibriate chemical potentials

in various constituent phases. In the present study,

therefore, we have considered a general case of non-

equilibrium solidification, which often results in a col-

umnar dendritic growth with a distinct microstructure

[14]. This assumption leads to a situation where Scheil�s
model [20] is applicable, i.e., the solute concentration

within the bulk liquid may be uniform over microscopic

distances, but may have a non-uniform profile in the

solid. The mixture composition, Cmix, in this case can be
described as:

Cmix ¼ flCl þ
Z gs

0

Cs da ð12cÞ

Using the above definition, and with an additional

assumption of no local remelting, the final form of

species conservation becomes:

o

ot
ðqClÞ þ r � ðq~uuClÞ ¼ r � ðqlflDlrClÞ þ

o

ot
ðqfsClÞ

� kpCl
o

ot
ðqfsÞ ð12dÞ

where kp is the partition coefficient (i.e., the ratio of
solute concentration in the solid to that in the liquid).

The physics of solidification can be further complicated

by the fact that in reality, due to a finite diffusivity in the

liquid phase, there may be an accumulation of solute on

the liquid side of the interface within a diffusion (or

solutal) boundary layer adjacent to the interface. This

leads to a phenomenon commonly known as solutal

undercooling, which can be quantified as the difference

between the interfacial and volume-averaged liquid

species concentration. This may be as a consequence of

formation of a diffusion (or solutal) boundary layer

adjacent to the solid–liquid interface [20], beyond which

the mass transport predominantly takes place by con-

vection. The solutal undercooling may depend on the

liquid species diffusivity, the mean crystal and dendrite

growth rate, mean thickness of the solutal boundary

layer, the solid volume fraction, and the interfacial area

concentration representing the interface geometry.

However, transport in the liquid and the solutal

boundary layer is strongly influenced by convection,

which tends to thin the solutal boundary layer at the

interface. On the microscopic scale, the effect of solute

build-up or local solutal undercooling may be treated

through an effective partition coefficient, which has

previously been used in metallurgical analysis of mi-

crosegregation [20]. Such effects are incorporated in the

present model also, by correlating the effective partition

coefficient (kp) with the equilibrium partition coefficient
(k�p) in the following manner [20]:

kp ¼
k�p

k�p þ ð1� k�pÞ exp � Rd
Dl

� � ð13Þ

where R is the local crystal growth rate and d is the
thickness of the solutal boundary layer on a microscopic

scale. Eq. (13) is basically an outcome of a closed-form

solution method originating from microscopic solute-bal-

ance principles, as outlined in [20]. The exponential term in

Eq. (13) accounts for solutal undercooling, where the pa-

rameter Rd=Dl may be interpreted as a local solutal Peclet
number. On a macroscpic scale, Rd=Dl may be equated to
a macroscopic solutal Peclet number defined as:

Pemacro ¼
Rpclref
qsDlr

ð14Þ

In Eq. (14), Rpc is the phase change rate per unit
volume, lref is the diffusion length in the liquid that
characterises mean species diffusion in the liquid ad-

joining the solid–liquid interface, and r is the interfacial
area contraction (defined as the ratio of solid–liquid

interface area to control volume) that characterises first-

order geometric effects on interfacial species transfer.

The physical basis of the above macroscopic Peclet

number is provided in the two-phase model of Ni et al.

[21]. Incorporation of such considerations in the mac-

roscopic modelling is essential, since the nature of the

compositional gradient inside the solutal boundary layer

adjacent to the solid–liquid interface controls the com-

positional convection. This, in turn, determines the

S. Chakraborty, P. Dutta / International Journal of Heat and Mass Transfer 46 (2003) 2115–2134 2119



overall thermo-solutal convection field, thus affecting

the final macro-segregation pattern [22].

3. Numerical method

Eqs. (1), (2a), (3a) and (4) are discretised using a

pressure-based semi-implicit finite volume method ac-

cording to the SIMPLER algorithm [23]. For accurate

prediction of the liquid fraction in the present �fixed-grid
enthalpy-based� procedure, the latent heat content of
each computational cell needs to be updated according

to the temperature and/or species concentration values

predicted by the macroscopic conservation equations,

during each iteration within a time step. In a physical

sense, such an updating attempts to neutralise the dif-

ference in the nodal temperature predicted from the

energy equation, and that dictated by the phase-change

considerations. In the present context, we choose an

iterative update scheme proposed by Brent et al. [19],

which is of the form:

½DHP 
nþ1 ¼ ½DHP 
n þ
aP
a0P

k½fhPgn � F �1fDHPgn
 ð15Þ

where a0P ¼ qDV =Dt, aP is the coefficient of TP in the
discretization equation of the governing energy equa-

tion, k is a relaxation factor, F �1 is a suitable function

depending on the phase change morphology, DV is the
volume of a computational cell centred around the grid

pint P , Dt is the time step chosen and hP is the sensible
enthalpy appropriate to the nodal point P . The physical
meaning of the term aP=a0P is described in [19]. In Eq.
(15), F �1 needs to be devised consistently with the mi-

croscopic physics followed in the mathematical formu-

lation, so that physically meaningful results pertaining

to a specific solidification model can be obtained. One

may note here that the function F correlates DH with the
phase-changing temperature through the sensible enth-

alpy (h). Hence, the inverse of that function, F �1, can be

employed here to describe the variation of h as a func-
tion of DH in an explicit manner. For the non-equilib-

rium solidification situation addressed in the present

study, the function F �1 can be suitably described as [24]:

F �1ðDHÞ ¼ cpTm � cpðTm � TLÞ
DH
L

� �ðkp�1Þ

ð16Þ

where cp is the specific heat of the mixture (volume av-
eraged), L is the latent heat of fusion of the solidifying
substance, Tm is the melting point of the pure solvent
and TL is the liquidus temperature corresponding to the
current solute concentration in the liquid.

3.1. Model validation, grid-independence study and con-

vergence criteria

Due to the absence of three-dimensional numerical

data corresponding to an alloy solidification problem,

the validation of our three-dimensional code is per-

formed in several stages. First, the three-dimensional

double-diffusive convection portion (without phase

change) of the code is validated against the numerical

results from Sezai and Mohamad [16]. Fig. 2 shows the

variation of average Nusselt number and Sherwood

number with the buoyancy ratio, N , and a comparison
of the predictions from the present model with the re-

sults reported in Sezai and Mohamad [16] shows a good

agreement between the two. Next, the solidification as-

pects of the present numerical model are validated

against benchmark numerical results corresponding to a

two-dimensional solidification situation (columnar den-

dritic growth with distinct microstructure) presented in

[14]. For this case, the third dimension is made long

and only a few grids are taken in that direction so that a

two-dimensional solidification situation is effectively

simulated by the present three-dimensional model. A

summary of the comparison of macrosegregation results

using the present model, and those reported in [14] is

Sezai and Mohamad
Present model    

–0.1 –1.0 –10.0 

3 

5 

1 

N 

Nu 

Sezai and Mohamad
Present model    

–0.1 –1 –10 
0 

10 

20 

30 

40 

N 

Sh 

(a)

(b)

Fig. 2. Comparison of results from the present model with

those from Sezai and Mohamad.
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presented in Table 1, and close agreements can be ob-

served. The validated numerical model is subsequently

utilised to investigate the domain of transient solidifi-

cation resulting in a three-dimensional transport of

mass, momentum, heat and solute inside a cubic

enclosure. As an outcome of a comprehensive grid-

independence study, we have taken a 60
 40
 40 non-
uniform grid as our final simulation matrix, with very

fine grids along the x-direction near the cold wall (�0.05
mm). Also, we have adopted a gradually increasing time

step, starting from an initial value of 0.001 s to a final

value of 0.1 s for the later stages. Selection of such

gridding and time step is primarily meant to capture the

initial transients, as solidification begins. Also, small

time steps ensure that the predictions regarding the in-

terface growth rates are accurate enough. However, it is

found that, a finer grid system and time step size is

unable to alter the results appreciably, for both cases

under consideration. A summary of the grid-indepen-

dence study, involving the evaluation of solution fields

of a test matrix of simulations at four different mesh

spacings and three different time-step sizes is presented

in Table 2.

Convergence in inner iterations is declared only when

the following conditions are simultaneously satisfied:

(i) / � /old=/maxj j6 10�5, where / stands for each sca-
lar variable solved for at a grid point at the current

Table 1

Comparison with macrosegregation predictions from the pre-

sent model and that predicted in [14] (model C)

x ðmmÞ Cmix (Voller
et al., [14])

Cmix (present
formulation)

y ¼ 10 mm
2.5 0.08 0.0795

4.0 0.08 0.0801

6.5 0.09 0.0903

12.5 0.08 0.0905

22.5 0.09 0.0899

24 0.1 0.0101

y ¼ 25 mm
2.4 0.08 0.0799

3.9 0.08 0.0795

6.5 0.09 0.0801

23.0 0.1 0.0999

y ¼ 40 mm
2.3 0.08 0.0798

4.2 0.08 0.0802

9.5 0.1 0.0998

14.0 0.1 0.1001

24.0 0.15 0.1502

Table 2

Effect of grid size and time step size on numerical results

Grid size jumaxj 
 102 (m/s) jvmaxj 
 102 (m/s) jwmaxj 
 102 (m/s) Tmax (�C) Cl;max (weight
fraction solute)

Effect of grid size on resultsa

80
 80
 60 )0.6554 (40, 40, 25)
0.001%

)0.8224 (10, 5, 25)
0.001%

0.0015 (10, 10, 25)

0.002%

40 (50, 25, 25)

0.001%

0.723 (10, 10, 25)

0.001%

80
 60
 60 )0.6453 (40, 40, 25)
0.001%

)0.8220 (10, 5, 25)
0.001%

0.0014 (10, 10, 25)

0.002%

40 (50, 25, 25)

0.001%

0.723 (10, 10, 25)

0.001%

60
 40
 40 )0.6450 (40, 40, 25)
0.002%

)0.8200 (10, 5, 25)
0.002%

0.0010 (10, 10, 25)

0.003%

40 (50, 25, 25)

0.001%

0.720 (10, 10, 25)

0.001%

40
 40
 40 )0.5842 (30, 40, 25)
0.013%

)0.6238 (10, 5, 25)
0.039%

0.0001 (10, 10, 25)

0.056%

40 (50, 25, 25)

0.001%

0.701 (10, 10, 25)

0.045%

Minimum time

step size (Dt)

Effect of time-step size on resultsb

0.01 s )0.53649 (30, 40, 25)
0.019%

)0.4568 (10, 5, 25)
0.085%

0.0001 (10, 10, 25)

0.055%

40 (50, 25, 25)

0.001%

0.701 (10, 10, 25)

0.100%

0.001 s )0.6450 (40, 40, 25)
0.002%

)0.8200 (10, 5, 25)
0.002%

0.0010 (10, 10, 25)

0.003%

40 (50, 25, 25)

0.001%

0.720 (10, 10, 25)

0.001%

0.0001 s )0.6559 (40, 40, 25)
0.001%

)0.8219 (10, 5, 25)
0.001%

0.0011 (10, 10, 25)

0.002%

40 (50, 25, 25)

0.001%

0.713 (10, 10, 25)

0.001%

aNumbers in the parenthesis represent locations (mm, mm, mm) in the cavity, with respect to the bottom left corner, where the

quoted values occur. The percentages quoted represent relative errors corresponding to the above quoted values. The time-step size is

taken as Dt ¼ 0:001 s, for all cases. All results correspond to t ¼ 100 s, case study I.
bNumbers in the bracket represent locations (mm, mm) in the cavity (with respect to the bottom left corner), where the quoted

values occur. The percentages quoted represent relative errors corresponding to the above quoted values. The grid size is taken as

60
 60
 60, for all cases. All results correspond to t ¼ 100 s, case study I.
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iteration level, /old represents the corresponding va-
lue at the previous iteration level, and /max is the
maximum value of the variable at the iteration level

in the entire domain.

(ii) Absolute values of the energy balance are within

0.1% of the total stored energy within the computa-

tional domain.

4. Results and discussion

As mentioned earlier, simulations are performed for

two separate cases. The first case (subsequently referred

to as case study I) corresponds to the solidification of

an aqueous ammonium chloride solution chosen as the

metal–alloy analogue. The thermo-physical properties

used for the simulation are listed in Table 3. The data

listed in Table 3 corresponding to the above case study

are close to those for an aqueous ammonium chloride

system [14]. In the table, NH4Cl is considered as the

pure component (solvent) and H2O is considered as

the solute, which is rejected during solidification of the

system corresponding to the initial composition adop-

ted for this study. Such a system is primarily selected

because of the fact that similar systems are extensively

used as solidification media for benchmark experi-

mentation. These systems have unique advantages in

the sense that they have freezing temperatures close to

room temperature. In addition, they are transparent,

thus permitting flow visualisation. However, as stated

earlier, such systems do not exhibit solidification be-

haviour exactly in the same way as that in actual me-

tallic alloys, as solutal buoyancy effects are much more

prominent in real metallic alloy systems than in the

corresponding analogues. Accordingly, we perform a

second case study (subsequently referred to as case

study II), where we analyse solidification behaviour of

a substance having thermo-physical properties similar

to common metallic alloys (properties enlisted in Table

3). The initial composition of the mixture is so selected

that in both cases, a lighter solute is rejected on solid-

ification, so that counteracting effects of thermo-solutal

buoyancy can be simulated, leading to a resultant

double-diffusive convection and macrosegregation.

Another major distinction between the two case studies

under investigation is in terms of certain significant

non-dimensional thermo-physical parameters, such as

Prandtl number (Pr) and Lewis number (Le). For case

study I, Pr ¼ 7:5 and Le ¼ 27:8, whereas for case study
II, Pr ¼ 0:015 and Le ¼ 1:7
 104. The significance of
the above values, in terms of relevant transport be-

haviour in the two cases, will be discussed subse-

quently. With the given configurations of the systems,

characteristic time scales for complete solidification

turns out to be of the order of 104 s for case study I and

103 s for case study II [25].

4.1. Results of case study I

Once the temperature of the left side wall is lowered

to the prescribed value, a strong counterclockwise flow

field is generated by high thermal gradients due to the

Table 3

Table of thermo-physical properties and problem data

Thermo-physical properties Case study I Case study II

Specific heat (cpl; cps) 3000 J/kg 250.0 J/kg

Thermal conductivity of solid (ks) 0.4 W/mK 60.0 W/mK

Thermal conductivity of liquid (kl) 0.4 W/mK 30.0 W/mK

Density (q) 1000 kg/m3 7000 kg/m3

Viscosity (l) 1:0
 10�3 kg/m s 1:85
 10�3 kg/m s
Liquid diffusion coefficient (Dl) 4:8
 10�9 m2/s 1
 10�9 m2/s
Latent heat of fusion (L) 3:0
 105 J/kg 5:9
 104 J/kg
Thermal expansion coefficient (bT) 4:0
 10�5 K�1 1:2
 10�4 K�1

Solutal expansion coefficient (bS) 0.025 0.5

Eutectic temperature (TE) )14 �C 183 �C
Eutectic concentration (mass fraction) (CE) 0.803 0.381

Equilibrium partition coefficient (k�p) 0.3 0.0676

Melting point of pure component, i.e., solvent (Tm) 356.85 �C 330 �C

Problem data

Cavity dimension (m) 0:05
 0:05
 0:05 0:01
 0:01
 0:01
Cold wall temperature (Tcold) )20 �C 150 �C
Initial temperature (T0) 40 �C 350 �C
Initial concentration (mass fraction) (C0) 0.7 0.1
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imposed boundary condition. Thermal influences in the

flow are expected to govern the transport processes at

initial stages, when large temperature gradients exist and

the species concentration distribution is uniform and

close to the initial composition. As a result of the

cooling effects, there is downflow near the left wall,

outflow at the bottom, and a simultaneous growth of the

mush wherever the temperature is less than the solidifi-

cation temperature.

Fig. 3 shows the projections of streamlines and iso-

therms on various planes corresponding to case study I,

at t ¼ 50 s. The projections of streamlines and isotherms
shown in Fig. 3 are essentially the components in the

planes of interest. It can be observed that due to a

cooling effect at the solidification front, the cold and

heavy fluid descends along the interface. Subsequently,

it tends to take a counterclockwise turn near the bottom

of the cavity, as evident from Fig. 3(a) showing the

projection of streamlines on the mid x–z plane (subse-
quently called as the vertical mid-plane). This form of

convection is the consequence of a dominant thermal

buoyancy-driven flow in that region. Fig. 3(b) represents

the projection of streamlines and isotherms on the mid

x–y plane (subsequently called as the horizontal mid
plane). The flow takes a turn in order to replenish the

fluid that has descended vertically downwards, so that

continuity in the fluid flow is maintained. The cold fluid

that has descended downwards tends to rise as it ap-

proaches the warmer bulk fluid. Such motions are

captured in Fig. 3(c) which shows the projection of

streamlines on the mid y–z plane (subsequently referred
to as the profile mid-plane). Fig. 3(b) suggests that

the streamlines are not parallel to the x-axis, as they
tend to get curved. Also, the distance between adjacent

streamlines does not remain constant, but tends to vary

as one moves along a curvilinear loop. The above ob-

servation shows that there is an element of three-

dimensionality in the flow. From the above figures, the

existence of wall-jets is clearly evident, which is the most

obvious manifestation of a three-dimensional behav-

iour. A significant asymmetry observed in the flow

patterns depicted in the above figures can be attributed

primarily to the three-dimensionality in flow. It can be

noted that in order to capture the formation of wall-jets

in details, grids are refined around the edges where they

appear.

The isotherms on the vertical mid-plane show that

near the bottom of the cavity, the temperature contours

are bent and assume the form of a �shoe�. This shape of
the isotherms suggests that there is a dominant advec-

tion at these locations in the cavity, due to a descending

motion of the cold fluid. The nearly parallel isotherms

on the horizontal mid-plane suggest that heat transfer at

this stage is predominantly conduction-dominated at

most locations in that plane. Also, not much tempera-

ture variation can be seen in the profile mid-plane. This

is an indication of the fact that the effect of chilling at

the left wall has not effectively propagated to the middle

of the cavity within this time.

Fig. 4 shows similar plots as in Fig. 3, but only at a

later stage (t ¼ 480 s). The transient nature of the so-
lidification process is apparent from the above figures.

It can be observed that the flow has progressed to a

greater extent longitudinally, on account of heat

transfer effects taking place along that direction as a

result of directional solidification. Fig. 4(a) shows a

number of circulations in the projection of streamlines

on the vertical mid-plane. However, the circulations are

all in the same (counterclockwise) sense (identified by

the positive signs of the corresponding stream func-

tions), which indicates that the flow is dominated by

thermal buoyancy. Curvatures, with crests and troughs

at multiple locations in the projection of streamlines on

the profile mid-plane (as evident from Fig. 4(c)), sug-

gest that the three-dimensionality in the flow has

increased with time. The slight curvature of isotherms

in the horizontal mid-plane near the walls, as observed

in Fig. 4(b), is due to the effects of fluid flow at that

location. Such effects are also observed in the isotherms

on the profile mid-plane (Fig. 4(c)). A sharper thermal

gradient is observed (indicated by closer isotherms) at

lower portions of the cavity as compared to the higher

locations in that plane.

Fig. 5 compares the variation of solute concentration

along the vertical direction at the mid-section of the

cavity at two different instances. The above is an indi-

cation of macrosegregation along the vertical direction.

It can be observed that the composition variation be-

comes more significant with time, due to subsequent

solute redistribution. Fig. 6(a) shows the longitudinal

composition variation (i.e., along the x-direction) at
different vertical locations at t ¼ 50 s. One may also
notice a sharp increase in solute concentration in the

vicinity of the interface, because of rejection of solute

during solidification. The rejected solute descends along

the interface because of a dominant thermally driven

fluid motion, which leads to a composition variation in

the vertical direction. However, the bulk portion of the

cavity is still having a homogeneous species composition

(same as the nominal composition), because of the ab-

sence of fluid flow in these regions. Such a compositional

homogeneity is expected, as species diffusion is a much

slower process compared to species advection. Fig. 6(b)

shows a similar composition variation, but at t ¼ 480 s.
We observe that in addition to a segregation in the

vertical direction, there is also a significant longitudinal

segregation, especially towards the bottom of the cavity.

This is because of a stronger convection at these loca-

tions, marked by different zones of upflow and down-

flow. Such effects give rise to an appreciable composition

variation throughout the cavity. During solidification in

the present case, the rejected solute is predominantly
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transported towards the bottom of the cavity. Since the

rejected solute is lighter than the bulk fluid, the solute-

rich liquid in this region tends to rise. However, in order

to do so, it has to overcome the effect of thermal
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Fig. 3. Case study I: Projections of streamlines (on the left) and isotherms (on the right) on various mid-planes at t ¼ 50 s. (a) Vertical
(x–z) mid-plane, (b) horizontal (x–y) mid-plane and (c) profile (y–z) mid-plane (all dimensions are in m, and temperature labels are in
�C).
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buoyancy. Since the relative strength of solutal buoy-

ancy is small in this case, the solute-rich layer remains

trapped at the bottom of the cavity, as evident from

Fig. 6.
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Fig. 4. Case study I: Projections of streamlines (on the left) and isotherms (on the right) on various mid-planes at t ¼ 480 s. (a) Vertical
(x–z) mid-plane, (b) horizontal (x–y) mid-plane and (c) profile (y–z) mid-plane (all dimensions are in m, and temperature labels are in
�C).
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4.2. Results of case study II

Figs. 7 and 8 show the projections of streamlines and

isotherms on various mid-planes, corresponding to the

metallic alloy system. The non-equidistant nature of the

streamlines as well as counter-rotating circulations in

the sectional planes clearly demonstrate three-dimensi-

onality in the flow. A distinct feature can now be ob-

served, as compared to the metal–alloy analogue system

considered earlier (case study I). In the present case, the

streamlines show the evolution of counter-rotating vor-

tices at different locations of the cavity (as evident from

opposite signs of projected streamline contours). The

origin of clockwise rotating vortices is due to solutal

gradient build-up caused by the transportation of solute

from the mush with a thermal buoyancy-driven major

vortex adjacent to the phase-change front. Additionally,

one may note that the effects of solutal buoyancy are not

localised, but are global in nature. However, presence of

localised solutal convection is observed only at those

places in the cavity where the influence of solutal buoy-

ancy is strong enough to completely overcome thermal

buoyancy. Since the thermal and solutal buoyancy op-

pose each other for the system under investigation, the

solutal buoyancy simply reduces the strength of the flow

field due to thermal buoyancy at other locations in the

cavity. A major difference between results in case I and

those in the present case is that solutally driven vortices

were rarely observable in the former case, owing to a

much lower solutal buoyancy strength. The formation of

various counter-rotating vortices is shown in a zoomed

plot of projection of velocity vectors on the profile mid-

plane (Fig. 9). For instance, we may observe in Fig. 9 a

clockwise-rotating vortex in the vicinity of a counter-

clockwise-rotating vortex at the top right corner. The

projections of isotherms on various mid-planes corre-

sponding to two different instances of time are shown in

Figs. 7 and 8. As an outcome of the interaction between

the two recirculatory flow patterns, the isotherms appear

to be stretched at certain locations in the cavity, as ap-

parent from the above figures. It is observed from the

streamline projections in Figs. 7 and 8 that, as time

progresses, the major thermal buoyancy-driven vortex is

pushed up near the region of influence of the minor

vortices. In other words, the solute, carried by the ther-

mally driven flow, is now being predominantly rejected

towards the top of the cavity. This leads to a sufficiently

strong solutal buoyancy at such locations adjacent to the

major vortex. On the other hand, the effects of extension

of the mushy zone as well as the lowering of solutal

gradients tend to decrease the strength of the solutal

buoyancy-driven secondary clockwise vortices. The lo-

cation of the predominant minor vortices shifts upward

as time progresses, as apparent from Figs. 7 and 8. As the

mushy zone extends near the region where the minor

vortices are created, the resultant convective flow be-
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t ¼ 50 s and (b) t ¼ 480 s.
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comes weaker. The above is evident from the decreasing

magnitude of the corresponding contours of projected

streamlines with time. Due to the progressive weakening

of the minor vortices, their influence tends to diminish

with regard to transport of solute over a macroscopic

length scale. Accordingly, the characteristics representing
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Fig. 7. Case study II: Projections of streamlines (on the left) and isotherms (on the right) at t ¼ 8 s. (a) Vertical (x–z) mid-plane, (b)
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the longitudinal composition variation tend to become

flatter with time, as observed in Fig. 10(a)–(c). However,

buoyancy effects remain strong enough to result in

variations of composition along the vertical direction,

due to the presence of regions of sharp upflow and

downflow. These effects are apparent from Fig. 11.
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The species redistribution on account of solute rejec-

tion at the solidification front is also influenced by global

three-dimensional flow patterns, as discussed earlier. Such

effects are visible in the iso-concentration plots on the

profile mid-plane at different instances of time (Fig. 12(a)–

(c)). At initial stages, thermal and solutal buoyancy effects

are comparable, and hence a monotonic increase or de-

crease in species concentration along the vertical is not

observed. However, at later stages, solutal buoyancy ef-

fects tend to dominate at these locations, which results in

a monotonically increasing solutal gradient towards the

top. Such gradients are because of transport of the lighter

solute (rejected during solidification) towards the top of

the cavity by a solutal buoyancy-dominated flow. The

flow weakens hereafter, resulting in an insignificant effect

of flow on both solutal and thermal fields for the re-

maining period of solidification.

The velocity components along the y-direction causes
solute transport along that direction also, leading to a

crosswise (i.e., along y) variation of composition. Such
effects are transient, and are observed in Fig. 13. The

figure clearly suggests that there is a significant compo-

sition variation along the y-direction due to redistribu-
tion of the rejected solute with thermo-solutal convection

currents. Similar compositional variations cannot be

captured by two-dimensional solidification models.

However, from a practical viewpoint, such variations

are extremely important, as they quantify the nature

and extent of macrosegregation inside a realistic three-

dimensional solidifying domain.

4.3. Effect of three-dimensional transport: comparison

between representative case studies

In order to summarise the gross effects of heat and

mass transfer for the two case studies and to compare

the same, variation of Nusselt number (Nu) and Sher-
wood number (Sh) with buoyancy ratio (N ) is presented
corresponding to case studies I and II, in Figs. 14 and

15, respectively. The Nusselt number in the present

context is defined as:

Nu ¼
R R q==

liq
ðxmax�xliqÞ dy dz
klðTliq�TiÞ

Across
ð17Þ

where q==liq is the heat flux at the liquidus interface, xliq is
the position of the liquidus interface (x-coordinate), xmax
is the dimension of the problem domain along x-direc-
tion, Tliq is the local liquidus temperature, Ti is the initial
temperature, kl is thermal conductivity of the liquid
phase, and Across is the cross-sectional area of the inter-
face (perpendicular to x-direction). The buoyancy ration,
N , is defined as the ratio of solutal Rayleigh number and
thermal Rayleigh number (i.e. N ¼ Ras=RaT ). Similarly,
the Sherwood number is defined as:

Sh ¼
R R m==

liq
ðxmax�xliqÞ dy dz
DlðCliq�CiÞ

Across
ð18Þ

where m==
liq is the mass flux at the liquidus interface, Cliq

is the local liquidus composition, Ci is the initial
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plane (exact coordinates are given in figure) at t ¼ 480 s.
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composition, Dl is mass diffusion coefficient of the liquid
phase. At t ¼ 0, the buoyancy ratio is equal to zero.
Thereafter, the solutal Rayleigh number increases with

time (on account of solute rejection associated with the

solidification process), while the thermal Rayleigh

number decreases with time (since the characteristic

temperature gradient driving the fluid flow continuously

decreases with solidification-accompanied cooling).

Thus, the magnitude of N increases continuously, as

solidification progresses. It is worth mentioning here

that this phenomenon is unlike the case of classical

double-diffusive convection without phase change, since

the ratio N in the present case varies on account of in-
herent transient behaviour of the solidification process

itself, rather than due to variation of externally imposed

concentration boundary conditions. It can also be noted

here that the parameter N is negative in sign in the

present context, on account of opposing effects of ther-

mal and solutal buoyancy forces.

Fig. 14(a) and (b) depicts the variation of Nu and
Sh respectively, with N , corresponding to both two-
dimensional and three-dimensional simulations. As a

general behaviour, it can be observed that both Nu and
Sh decrease with increase in magnitude of N , until the
magnitude of N becomes nearly unity. This may be at-
tributed to the fact that the flow driven by thermal

buoyancy effect is progressively weakened by the op-

posing solutal buoyancy effect, as the magnitude of N
increases. As the thermal and solutal buoyancy forces

become nearly equal in magnitude but opposite in di-

rection, the net buoyancy forces on the rising fluid near

the phase-changing interface diminish. As a result, fluid

movement in the lateral direction becomes possible,

since an additional degree of freedom is available for the

fluid flow in the transverse direction for the case of a

three-dimensional cubic enclosure. Consequently, zones

of secondary flow in the mid profile plane can be ob-

served, (as apparent from Fig. 9), depicting a three-

dimensional transport pattern. It can also be observed

from Fig. 14(a) and (b) that the corresponding two-

dimensional model overpredicts the Nusselt and Sher-

wood numbers in the three-dimensional regime, because
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of its inability to detect effects of secondary flow in the

transverse plane.

Fig. 15(a) and (b) also depict similar effects, but for

case study II. A closer look at these figures, however,

reveals significant quantitative differences in the overall

transport processes for the two cases investigated. The

characteristic Lewis numbers (Le) for these two cases
differ significantly in their orders of magnitude. In case

study I, the Lewis number is of the order of 102, whereas

it is of the order of 104 for case study II. For the lower

value of Le (case I), the flow remains almost two-di-

mensional for a wider range of the buoyancy ratio (N ).
In this range, the Nusselt number is close to unity, in-

dicating a predominantly diffusive heat transfer mecha-

nism. For the case of higher Lewis number (case study

II), the magnitude of the thermal buoyancy is more, and

the flow has three-dimensional effects over a wider range

of N (in which the strength of thermal buoyancy is

comparable to that of solutal buoyancy). This three-di-

mensional flow is characterised by secondary counter-

rotating vortices in the profile plane, in addition to the

primary circulation.

Since the Lewis number is an indicator that deals

with the relative influence of thermal and mass diffu-

sivities, it has a significant effect on the relative thickness

of thermal and solutal boundary layers. For the case of a

large Lewis number (as in case study II), the diffusion

boundary layer thickness near the phase-changing

interface is significantly smaller than the thermal

boundary layer thickness. This is physically consistent

with the creation of a large solutal gradient at the liquid

side of the interface, thereby causing an accumulation of

solute at that location. This gives rise to the so-called

‘‘solutal-undercooling’’. It can be noted here that this

�undercooling� is with respect to a change in local liq-
uidus temperature, as a result of change in species con-

centration at that location. However, transport in the

bulk liquid and in the solutal boundary layer adjacent to

the liquidus front is influenced primarily by convection,

resulting in the convection of solute further away from

the thinned solutal boundary layer region.

During solidification, solute is rejected into the liquid

throughout the mushy region. However, the direction of

transport of the rejected solute depends on the relative

strength of local thermal and solutal buoyancy forces at

that location. On account of solute build-up at the

dendrite tips, there is an additional strength of solutal

convection, which can be scaled as fgðCt � CiÞDl=
RCig0:5, where Ct is the species concentration at the
dendrite tip, Ci is the nominal alloy composition, Dl is
the diffusivity of solute in the liquid, and R is the inter-
face speed [26]. If mass diffusivity is much smaller than

thermal diffusivity (as in case study II), large concen-

tration gradients effectively build up at the dendrite tips,

i.e., Ct � Ci is high. This additional strength of solutal
convection, aided by the solutal buoyancy forces already

present, can oppose the thermal gradients in a more

effective manner. The enhancement of solutal convection

in this manner can make the solutal buoyancy forces al-

most nullify the thermal buoyancy forces, even if mag-

nitude of N is quite small (i.e. in the range of 0.2–0.5).
Therefore, over a broad range of N , a three-dimensional
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nature can be expected in double-diffusive convection in

the presence of solidification. The three-dimensional

flow behaviour in this regime is characterised by signif-

icant transverse component of flow velocities (because of

availability of an additional degree of freedom in the

third direction), leading to an appreciable amount of

macrosegregation in the transverse direction. This can

have a significant impact on the final composition of the

solidified microstructure at these locations, which is

determined by the instantaneous solute concentration

adjacent to the solidification front during evolution of

the phase-change process.

5. Conclusion

The present work is aimed at modelling three-di-

mensional transport phenomena during a transient so-

lidification process occurring inside a cubic enclosure.

The macroscopic transport of mass, momentum, heat

and solute is analysed using a fixed-grid enthalpy-based

mathematical model that is capable of addressing non-

equilibrium solidification situations on account of sol-

utal undercooling. Simulations are performed for two

distinct model systems, the first one corresponding to a

model metal alloy analogue system and the second one

corresponding to an actual metallic alloy system. In the

case studies chosen here, a lighter solute is rejected

during solidification, and therefore the solutal buoyancy

opposes the thermal buoyancy effects. The convective

flow patterns observed for the two cases are somewhat

different, since solutal buoyancy effects are usually much

stronger in the latter class of systems. In case study II, it

is observed that during the solidification process, solutal

buoyancy has the potential to completely overcome

thermal buoyancy at certain locations in the cavity,
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giving rise to solutally driven vortices circulating in a

sense opposite to those driven by thermal buoyancy

alone. Such counter-rotating vortices in three dimen-

sions, more prominent in actual metal–alloy systems

than in corresponding analogues, is responsible for

creating appreciable solute composition variation over

the entire solidifying domain. This, in turn, gives rise to

a significant transverse (y-direction) component of
macrosegregation, which cannot be captured by two-

dimensional solidificationsimulations.Typical curvatures

of streamlines and their non-equidistant characteristics,

as projected on various cross-sectional planes, show that

there is an element of three-dimensionality in the ther-

mo-solutal convection (originated from the solidification

process itself) and its interaction with the progressing

solidification front. The three-dimensional transport

leads to a global macrosegregation resulting in compo-

sition variations across the longitudinal planes, which

cannot be captured by two-dimensional mathematical

models.
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